Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Transl Psychiatry ; 14(1): 82, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38331943

Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.


Cerebellum , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Animals, Genetically Modified/metabolism , Cerebellum/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Brain/metabolism
2.
Int J Biol Sci ; 20(1): 312-330, 2024.
Article En | MEDLINE | ID: mdl-38164184

Background: The cAMP response element-binding protein (CREB) and CREB-regulated transcription coactivators (CRTCs) cooperate in the transcriptional activation of microphthalmia-associated transcription factor subtype M (MITF-M) that is a master regulator in the biogenesis, pigmentation and transfer of melanosomes at epidermal melanocytes. Here, we propose the targeting of phosphorylation circuits on CREB and CRTCs in the expression of MITF-M as the rationale to prevent skin hyperpigmentation by elucidating the inhibitory activity and mechanism of yakuchinone A (Yaku A) on facultative melanogenesis. Methods: We employed human epidermal melanocyte cell, mouse skin, and mouse melanoma cell, and applied Western blotting, reverse transcription-polymerase chain reaction, immunoprecipitation and confocal microscopy to conduct this study. Results: This study suggested that α-melanocyte stimulating hormone (α-MSH)-induced melanogenic programs could switch on the axis of protein kinase A-salt inducible kinases (PKA-SIKs) rather than that of PKA-AMP activated protein kinase (PKA-AMPK) during the dephosphorylation of CRTCs in the expression of MITF-M. SIK inhibitors rather than AMPK inhibitors stimulated melanin production in melanocyte cultures in the absence of extracellular melanogenic stimuli, wherein SIK inhibitors increased the dephosphorylation of CRTCs but bypassed the phosphorylation of CREB for the expression of MITF-M. Treatment with Yaku A prevented ultraviolet B (UV-B)-irradiated skin hyperpigmentation in mice and inhibited melanin production in α-MSH- or SIK inhibitor-activated melanocyte cultures. Mechanistically, Yaku A suppressed the expression of MITF-M via dually targeting the i) cAMP-dependent dissociation of PKA holoenzyme at the upstream from PKA-catalyzed phosphorylation of CREB coupled with PKA-SIKs axis-mediated dephosphorylation of CRTCs in α-MSH-induced melanogenic programs, and ii) nuclear import of CRTCs after SIK inhibitor-induced dephosphorylation of CRTCs. Conclusions: Taken together, the targeting phosphorylation circuits on CREB and CRTCs in the expression of MITF-M could be a suitable strategy to prevent pigmentary disorders in the skin.


Hyperpigmentation , Melanins , Humans , Animals , Mice , Melanins/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Phosphorylation , alpha-MSH/metabolism , AMP-Activated Protein Kinases/metabolism , Melanocytes/metabolism , Hyperpigmentation/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Cell Line, Tumor
3.
Cell Death Dis ; 14(7): 423, 2023 07 13.
Article En | MEDLINE | ID: mdl-37443071

Glioblastoma (GBM) is the most malignant tumor in brain and is highly resistant to therapy. Clinical evidence suggests increased number of cancer stem cells (CSCs) may contribute to the failure of conventional therapies, but the mechanisms associated with acquisition of CSC properties in GBM are not fully understood. We found that DAB2IP suppresses CSC properties by targeting the synaptic proteins neuroligin 3 (NLGN3) in GBM. Furthermore, we showed that GBM-derived NLGN3 has an oncogenic function by inducing CSC properties within GBM. Moreover, elevated NLGN3 transcription mediated by Wnt/ß-catenin signaling pathway resulted in increased secretion of NLGN3 into the surrounding tumor microenvironment. Both condition media containing NLGN3 and recombinant NLGN3 transformed neighboring cells to CSCs, suggesting NLGN3 as a critical component inducing CSC properties. Furthermore, targeting NLGN3-bearing CSCs using upstream Wnt/ß-catenin inhibitors synergistically enhances the efficacy of conventional treatment. Hence, we unveiled the series of regulatory mechanisms for acquisition of CSC properties in GBM progression by Wnt/ß-catenin-mediated NLGN3. These results may provide a new targeting strategy to improve the therapeutic efficacy of GBM treatments.


Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Up-Regulation , beta Catenin/metabolism , Wnt Signaling Pathway , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Cell Proliferation , Tumor Microenvironment , ras GTPase-Activating Proteins/metabolism
4.
J Mol Diagn ; 25(8): 583-591, 2023 08.
Article En | MEDLINE | ID: mdl-37088138

Growing evidence indicates that early and late postzygotic mosaicism can cause neurodevelopmental disorders (NDDs), but detection of low variant allele frequency (VAF) mosaic variants from blood remains a challenge. Data of 2162 patients with NDDs who underwent conventional genetic tests were reviewed and a deep sequencing was performed using a specifically designed mosaic next-generation sequencing (NGS) panel in the patients with negative genetic test results. Forty-four patents with neurocutaneous syndrome, malformation of cortical development, or nonlesional epileptic encephalopathies were included. In total, mosaic variants were detected from blood in 1.2% (25/2162) of the patients. Using conventional NGS panels, 22 mosaic variants (VAF, 8.8% to 29.8%) were identified in 18 different genes. Using a specifically designed mosaicism NGS panel, three mosaic variants of the NF1, TSC2, and AKT3 genes were identified (VAF, 2.0% to 11.2%). Mosaic variants were found frequently in the patients who had neurocutaneous syndrome (2/7, 28.6%), whereas only one or no mosaic variant was detected for patients who had malformations of cortical development (1/20, 5%) or nonlesional epileptic encephalopathies (0%, 0/17). In summary, mosaic variants that contribute to the spectrum of NDDs can be detected from blood via conventional NGS and specifically designed mosaicism NGS panels, and detection of mosaic variants using blood will increase diagnostic yield.


Brain Diseases , Neurocutaneous Syndromes , Neurodevelopmental Disorders , Humans , Gene Frequency , High-Throughput Nucleotide Sequencing/methods , Mosaicism , Mutation , Proto-Oncogene Proteins c-akt/genetics
5.
Proc Natl Acad Sci U S A ; 120(8): e2214507120, 2023 02 21.
Article En | MEDLINE | ID: mdl-36795749

Regulation of microtubule dynamics is required to properly control various steps of neurodevelopment. In this study, we identified granule cell antiserum-positive 14 (Gcap14) as a microtubule plus-end-tracking protein and as a regulator of microtubule dynamics during neurodevelopment. Gcap14 knockout mice exhibited impaired cortical lamination. Gcap14 deficiency resulted in defective neuronal migration. Moreover, nuclear distribution element nudE-like 1 (Ndel1), an interacting partner of Gcap14, effectively corrected the downregulation of microtubule dynamics and the defects in neuronal migration caused by Gcap14 deficiency. Finally, we found that the Gcap14-Ndel1 complex participates in the functional link between microtubule and actin filament, thereby regulating their crosstalks in the growth cones of cortical neurons. Taken together, we propose that the Gcap14-Ndel1 complex is fundamental for cytoskeletal remodeling during neurodevelopmental processes such as neuronal processes elongation and neuronal migration.


Actins , Microtubule-Associated Proteins , Neurons , Animals , Mice , Actins/metabolism , Cell Movement/physiology , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neurites/metabolism , Neurons/metabolism
6.
Cell Rep ; 42(1): 112003, 2023 01 31.
Article En | MEDLINE | ID: mdl-36641749

Linear nevus sebaceous syndrome (LNSS) is a neurocutaneous disorder caused by somatic gain-of-function mutations in KRAS or HRAS. LNSS brains have neurodevelopmental defects, including cerebral defects and epilepsy; however, its pathological mechanism and potentials for treatment are largely unclear. We show that introduction of KRASG12V in the developing mouse cortex results in subcortical nodular heterotopia and enhanced excitability, recapitulating major pathological manifestations of LNSS. Moreover, we show that decreased firing frequency of inhibitory neurons without KRASG12V expression leads to disrupted excitation and inhibition balance. Transcriptional profiling after destabilization domain-mediated clearance of KRASG12V in human neural progenitors and differentiating neurons identifies reversible functional networks underlying LNSS. Neurons expressing KRASG12V show molecular changes associated with delayed neuronal maturation, most of which are restored by KRASG12V clearance. These findings provide insights into the molecular networks underlying the reversibility of some of the neuropathologies observed in LNSS caused by dysregulation of the RAS pathway.


Epilepsy , Nevus, Sebaceous of Jadassohn , Mice , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Nevus, Sebaceous of Jadassohn/genetics , Nevus, Sebaceous of Jadassohn/pathology , Neuropathology , Mutation/genetics
7.
Mol Psychiatry ; 28(2): 856-870, 2023 02.
Article En | MEDLINE | ID: mdl-36357673

Although large-scale genome-wide association studies (GWAS) have identified an association between MAD1L1 (Mitotic Arrest Deficient-1 Like 1) and the pathology of schizophrenia, the molecular mechanisms underlying this association remain unclear. In the present study, we aimed to address these mechanisms by examining the role of MAD1 (the gene product of MAD1L1) in key neurodevelopmental processes in mice and human organoids. Our findings indicated that MAD1 is highly expressed during active cortical development and that MAD1 deficiency leads to impairments in neuronal migration and neurite outgrowth. We also observed that MAD1 is localized to the Golgi apparatus and regulates vesicular trafficking from the Golgi apparatus to the plasma membrane, which is required for the growth and polarity of migrating neurons. In this process, MAD1 physically interacts and collaborates with the kinesin-like protein KIFC3 (kinesin family member C3) to regulate the morphology of the Golgi apparatus and neuronal polarity, thereby ensuring proper neuronal migration and differentiation. Consequently, our findings indicate that MAD1 is an essential regulator of neuronal development and that alterations in MAD1 may underlie schizophrenia pathobiology.


Neocortex , Schizophrenia , Animals , Humans , Mice , Cell Cycle Proteins/genetics , Genome-Wide Association Study , Kinesins/genetics , Kinesins/metabolism , Neocortex/metabolism , Neurons/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism
8.
Orphanet J Rare Dis ; 17(1): 372, 2022 10 08.
Article En | MEDLINE | ID: mdl-36209187

BACKGROUND: Phase I of the Korean Undiagnosed Diseases Program (KUDP), performed for 3 years, has been completed. The Phase I program aimed to solve the problem of undiagnosed patients throughout the country and develop infrastructure, including a data management system and functional core laboratory, for long-term translational research. Herein, we share the clinical experiences of the Phase I program and introduce the activities of the functional core laboratory and data management system. RESULTS: During the program (2018-2020), 458 patients were enrolled and classified into 3 groups according to the following criteria: (I) those with a specific clinical assessment which can be verified by direct testing (32 patients); (II) those with a disease group with genetic and phenotypic heterogeneity (353 patients); and (III) those with atypical presentations or diseases unknown to date (73 patients). All patients underwent individualized diagnostic processes based on the decision of an expert consortium. Confirmative diagnoses were obtained for 242 patients (52.8%). The diagnostic yield was different for each group: 81.3% for Group I, 53.3% for Group II, and 38.4% for Group III. Diagnoses were made by next-generation sequencing for 204 patients (84.3%) and other genetic testing for 35 patients (14.5%). Three patients (1.2%) were diagnosed with nongenetic disorders. The KUDP functional core laboratory, with a group of experts, organized a streamlined research pipeline covering various resources, including animal models, stem cells, structural modeling and metabolic and biochemical approaches. Regular data review was performed to screen for candidate genes among undiagnosed patients, and six different genes were identified for functional research. We also developed a web-based database system that supports clinical cohort management and provides a matchmaker exchange protocol based on a matchbox, likely to reinforce the nationwide clinical network and further international collaboration. CONCLUSIONS: The KUDP evaluated the unmet needs of undiagnosed patients and established infrastructure for a data-sharing system and future functional research. The advancement of the KUDP may lead to sustainable bench-to-bedside research in Korea and contribute to ongoing international collaboration.


Undiagnosed Diseases , Databases, Factual , Humans , Information Dissemination , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Republic of Korea/epidemiology
9.
Cell Death Discov ; 8(1): 308, 2022 Jul 05.
Article En | MEDLINE | ID: mdl-35790735

Glioblastoma multiforme (GBM) is the most malignant brain tumor and is refractory to conventional therapies. Although previous studies have proposed that the interaction between gene mutations and the external environment leads to the occurrence of GBM, the pathogenesis of GBM is still unclear and much remains to be studied. Herein, we show an association between human glycoprotein stanniocalcin-2 (STC2) and aggressive GBM progression, and demonstrate the underlying mechanism. Elevated STC2 expression and secretion greatly increase GBM cell growth and invasive phenotypes. Mechanistically, both, conditioned media (CM) containing STC2 and recombinant STC2, can induce the transformation of GBM cells into more malignant phenotypes by upregulating the expression of the epithelial-mesenchymal transition transcription factor, snail family transcription repressor 2 (SNAI2) as well as matrix metalloproteinases (MMPs). Moreover, we further demonstrate that the oncogenic function of STC2 in GBM is mediated through the MAPK signaling pathway. Collectively, these results identify the mechanism of STC2 targeting SNAI2 and MMPs through the MAPK pathway in GBM, and provide insights into a potential therapeutic strategy for GBM.

10.
Genomics Inform ; 19(4): e39, 2021 Dec.
Article En | MEDLINE | ID: mdl-35172472

Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)‒positive breast cancer. However, its ER-independent cytotoxic and antifungal activities have prompted debates on its mechanism of action. To achieve a better understanding of the ER-independent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive genes through microarray screening of the heterozygous gene deletion library in fission yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their Gene Ontology (GO) 'biological process' terms identified from other genome-wide screenings of the budding yeast deletion library and the MCF7 breast cancer cell line. Several TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms including 'cell cycle' (cdc2, rik1, pas1, and leo1), 'signaling' (sck2, oga1, and cki3), and 'vesicle-mediated transport' (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with the 'signaling' GO term was related to the ER-independent antifungal action mechanisms of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity and led to an enlarged vesicle structure in comparison with the SP286 control strain. These results strongly suggest that the vesicle-mediated transport process might be another action mechanism of the ER-independent antifungal or cytotoxic effects of TAM.

11.
Cell Death Dis ; 11(9): 771, 2020 09 17.
Article En | MEDLINE | ID: mdl-32943609

Temozolomide (TMZ) is widely used for treating glioblastoma multiforme (GBM), however, the treatment of such brain tumors remains a challenge due to the development of resistance. Increasing studies have found that TMZ treatment could induce autophagy that may link to therapeutic resistance in GBM, but, the precise mechanisms are not fully understood. Understanding the molecular mechanisms underlying the response of GBM to chemotherapy is paramount for developing improved cancer therapeutics. In this study, we demonstrated that the loss of DOC-2/DAB2 interacting protein (DAB2IP) is responsible for TMZ-resistance in GBM through ATG9B. DAB2IP sensitized GBM to TMZ and suppressed TMZ-induced autophagy by negatively regulating ATG9B expression. A higher level of ATG9B expression was associated with GBM compared to low-grade glioma. The knockdown of ATG9B expression in GBM cells suppressed TMZ-induced autophagy as well as TMZ-resistance. Furthermore, we showed that DAB2IP negatively regulated ATG9B expression by blocking the Wnt/ß-catenin pathway. To enhance the benefit of TMZ and avoid therapeutic resistance, effective combination strategies were tested using a small molecule inhibitor blocking the Wnt/ß-catenin pathway in addition to TMZ. The combination treatment synergistically enhanced the efficacy of TMZ in GBM cells. In conclusion, the present study identified the mechanisms of TMZ-resistance of GBM mediated by DAB2IP and ATG9B which provides insight into a potential strategy to overcome TMZ chemo-resistance.


Autophagy , Central Nervous System Neoplasms/drug therapy , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Temozolomide/pharmacology , Wnt Proteins/metabolism , beta Catenin/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Autophagy-Related Proteins/metabolism , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Membrane Proteins/metabolism , MicroRNAs/metabolism , Signal Transduction , Wnt Signaling Pathway/drug effects , ras GTPase-Activating Proteins/metabolism
12.
ACS Omega ; 5(36): 22951-22957, 2020 Sep 15.
Article En | MEDLINE | ID: mdl-32954144

A novel, metal-free aerobic oxidation method is described. 4-Dimethylaminopyridine (DMAP) successfully catalyzed the oxidation of aryl α-halo esters to corresponding aryl α-keto esters (up to 95% yield) under mild reaction conditions (Li2CO3, dimethylacetamide, air, and room temperature). A mechanism has been proposed where the oxidation proceeds through a [3 + 2] cycloaddition between O2 in an air atmosphere and pyridinium ylides. The ylides are supposedly generated from aryl α-halo esters and DMAP in the presence of carbonates. Based on the plausible mechanism, the potential of DMAP as a catalyst in oxidation reactions was extended.

13.
Proc Natl Acad Sci U S A ; 117(18): 10055-10066, 2020 05 05.
Article En | MEDLINE | ID: mdl-32312822

Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuron-specific chromatin repression indicated as a potential mechanism.


Autism Spectrum Disorder/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Hippocampus/pathology , Actins/genetics , Adenosine Triphosphate/genetics , Animals , Autism Spectrum Disorder/pathology , Behavior, Animal/physiology , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Chromosome Pairing/genetics , Chromosome Pairing/physiology , Corpus Callosum/metabolism , Corpus Callosum/pathology , Dendrites/genetics , Dendrites/physiology , Disease Models, Animal , Gene Expression Regulation/genetics , Hippocampus/metabolism , Humans , Mice , Mice, Knockout , Mutation/genetics , Neurons/metabolism , Neurons/pathology , Transcription Factors/genetics
14.
Elife ; 82019 12 09.
Article En | MEDLINE | ID: mdl-31815665

Neuronal morphogenesis requires multiple regulatory pathways to appropriately determine axonal and dendritic structures, thereby to enable the functional neural connectivity. Yet, however, the precise mechanisms and components that regulate neuronal morphogenesis are still largely unknown. Here, we newly identified the sequential phosphorylation of NDEL1 critical for neuronal morphogenesis through the human kinome screening and phospho-proteomics analysis of NDEL1 from mouse brain lysate. DYRK2 phosphorylates NDEL1 S336 to prime the phosphorylation of NDEL1 S332 by GSK3ß. TARA, an interaction partner of NDEL1, scaffolds DYRK2 and GSK3ß to form a tripartite complex and enhances NDEL1 S336/S332 phosphorylation. This dual phosphorylation increases the filamentous actin dynamics. Ultimately, the phosphorylation enhances both axonal and dendritic outgrowth and promotes their arborization. Together, our findings suggest the NDEL1 phosphorylation at S336/S332 by the TARA-DYRK2-GSK3ß complex as a novel regulatory mechanism underlying neuronal morphogenesis.


Carrier Proteins/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Morphogenesis , Neurons/cytology , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Humans , Mice , Microfilament Proteins/metabolism , Phosphorylation , Proteome/analysis , Dyrk Kinases
15.
Mol Cells ; 42(6): 441-447, 2019 Jun 30.
Article En | MEDLINE | ID: mdl-31250618

RAS gene mutations are frequently found in one third of human cancers. Affecting approximately 1 in 1,000 newborns, germline and somatic gain-of-function mutations in the components of RAS/mitogen-activated protein kinase (RAS/MAPK) pathway has been shown to cause developmental disorders, known as RASopathies. Since RAS-MAPK pathway plays essential roles in proliferation, differentiation and migration involving developmental processes, individuals with RASopathies show abnormalities in various organ systems including central nervous system. The frequently seen neurological defects are developmental delay, macrocephaly, seizures, neurocognitive deficits, and structural malformations. Some of the defects stemmed from dysregulation of molecular and cellular processes affecting early neurodevelopmental processes. In this review, we will discuss the implications of RAS-MAPK pathway components in neurodevelopmental processes and pathogenesis of RASopathies.


Neurodevelopmental Disorders/genetics , ras Proteins/genetics , Costello Syndrome/genetics , Ectodermal Dysplasia/genetics , Facies , Failure to Thrive/genetics , Heart Defects, Congenital/genetics , Humans , Infant, Newborn , Neoplasms/metabolism , Neurofibromatosis 1/genetics , Nevus, Sebaceous of Jadassohn/genetics , Noonan Syndrome/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-raf/genetics , SOS1 Protein/genetics , Signal Transduction/genetics
16.
Clin Cancer Res ; 25(14): 4542-4551, 2019 07 15.
Article En | MEDLINE | ID: mdl-31000589

PURPOSE: Renal cell carcinoma (RCC) is known to be highly radioresistant but the mechanisms associated with radioresistance have remained elusive. We found DOC-2/DAB2 interactive protein (DAB2IP) frequently downregulated in RCC, is associated with radioresistance. In this study, we investigated the underlying mechanism regulating radioresistance by DAB2IP and developed appropriate treatment. EXPERIMENTAL DESIGN: Several RCC lines with or without DAB2IP expression were irradiated with ionizing radiation (IR) for determining their radiosensitivities based on colony formation assay. To investigate the underlying regulatory mechanism of DAB2IP, immunoprecipitation-mass spectrometry was performed to identify DAB2IP-interactive proteins. PARP-1 expression and enzymatic activity were determined using qRT-PCR, Western blot analysis, and ELISA. In vivo ubiquitination assay was used to test PARP-1 degradation. Furthermore, in vivo mice xenograft model and patient-derived xenograft (PDX) model were used to determine the effect of combination therapy to sensitizing tumors to IR. RESULTS: We notice that DAB2IP-deficient RCC cells acquire IR-resistance. Mechanistically, DAB2IP can form a complex with PARP-1 and E3 ligases that is responsible for degrading PARP-1. Indeed, elevated PARP-1 levels are associated with the IR resistance in RCC cells. Furthermore, PARP-1 inhibitor can enhance the IR response of either RCC xenograft model or PDX model. CONCLUSIONS: In this study, we unveil that loss of DAB2IP resulted in elevated PARP-1 protein is associated with IR-resistance in RCC. These results provide a new targeting strategy to improve the efficacy of radiotherapy of RCC.


Carcinoma, Renal Cell/pathology , Gene Expression Regulation, Neoplastic/radiation effects , Kidney Neoplasms/pathology , Radiation Tolerance/genetics , ras GTPase-Activating Proteins/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Cell Proliferation , Down-Regulation , Female , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Radiation, Ionizing , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , ras GTPase-Activating Proteins/genetics
17.
Nat Genet ; 50(8): 1093-1101, 2018 08.
Article En | MEDLINE | ID: mdl-30013181

Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between ß-catenin and Arp2/3 actin filament activities1. Loss of αN-catenin did not affect ß-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.


Actin-Related Protein 2-3 Complex/genetics , Cell Movement/genetics , Cerebral Cortex/physiology , Neurons/pathology , alpha Catenin/genetics , Actin-Related Protein 2-3 Complex/metabolism , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Embryo, Mammalian , Genome, Human , Humans , Mice , Mice, Inbred C57BL , Mutation , Nerve Tissue Proteins/genetics , Neurons/metabolism , Pedigree , alpha Catenin/metabolism
18.
Nat Med ; 21(12): 1445-54, 2015 Dec.
Article En | MEDLINE | ID: mdl-26523971

Focal malformations of cortical development (FMCDs) account for the majority of drug-resistant pediatric epilepsy. Postzygotic somatic mutations activating the phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway are found in a wide range of brain diseases, including FMCDs. It remains unclear how a mutation in a small fraction of cells disrupts the architecture of the entire hemisphere. Within human FMCD-affected brain, we found that cells showing activation of the PI3K-AKT-mTOR pathway were enriched for the AKT3(E17K) mutation. Introducing the FMCD-causing mutation into mouse brain resulted in electrographic seizures and impaired hemispheric architecture. Mutation-expressing neural progenitors showed misexpression of reelin, which led to a non-cell autonomous migration defect in neighboring cells, due at least in part to derepression of reelin transcription in a manner dependent on the forkhead box (FOX) transcription factor FOXG1. Treatments aimed at either blocking downstream AKT signaling or inactivating reelin restored migration. These findings suggest a central AKT-FOXG1-reelin signaling pathway in FMCD and support pathway inhibitors as potential treatments or therapies for some forms of focal epilepsy.


Cell Adhesion Molecules, Neuronal/metabolism , Cell Movement , Extracellular Matrix Proteins/metabolism , Forkhead Transcription Factors/metabolism , Malformations of Cortical Development/metabolism , Malformations of Cortical Development/pathology , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Serine Endopeptidases/metabolism , Animals , Base Sequence , Cell Differentiation , Cell Movement/genetics , Disease Models, Animal , Enzyme Activation , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Green Fluorescent Proteins/metabolism , Humans , Magnetic Resonance Imaging , Malformations of Cortical Development/enzymology , Malformations of Cortical Development/surgery , Mice , Molecular Sequence Data , Mosaicism , Mutation/genetics , Neural Stem Cells/metabolism , Neurons/metabolism , Neurons/pathology , Phenotype , RNA, Small Interfering/metabolism , Real-Time Polymerase Chain Reaction , Recombination, Genetic/genetics , Reelin Protein , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism
20.
Neuron ; 82(6): 1255-1262, 2014 Jun 18.
Article En | MEDLINE | ID: mdl-24945770

Acute gene inactivation using short hairpin RNA (shRNA, knockdown) in developing brain is a powerful technique to study genetic function; however, discrepancies between knockdown and knockout murine phenotypes have left unanswered questions. For example, doublecortin (Dcx) knockdown but not knockout shows a neocortical neuronal migration phenotype. Here we report that in utero electroporation of shRNA, but not siRNA or miRNA, to Dcx demonstrates a migration phenotype in Dcx knockouts akin to the effect in wild-type mice, suggesting shRNA-mediated off-target toxicity. This effect was not limited to Dcx, as it was observed in Dclk1 knockouts, as well as with a fraction of scrambled shRNAs, suggesting a sequence-dependent but not sequence-specific effect. Profiling RNAs from electroporated cells showed a defect in endogenous let7 miRNA levels, and disruption of let7 or Dicer recapitulated the migration defect. The results suggest that shRNA-mediated knockdown can produce untoward migration effects by altering endogenous miRNA pathways.


Cell Movement/genetics , Gene Knockdown Techniques/methods , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Microtubule-Associated Proteins/genetics , Neurons/physiology , Neuropeptides/genetics , RNA, Small Interfering/genetics , Animals , Doublecortin Domain Proteins , Doublecortin Protein , Gene Knockout Techniques/methods , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Phenotype
...